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BONDS AND OPTIONS VALUATION USING 
A CONDITIONING FACTOR APPROACH 

Sankarshan Basu' 
Angelos Dassios** 

Abstract 

This paper looks at methods to calculate prices (or approximate 
prices) of bonds (zero coupon as well as coupon bearing) where the 
interest rates follow a log-normal distribution using two different ways-
the first method makes use of a conditioning variable similar to the 
approach of Basu (1999) and Rogers and Shi (1995), while the second 
method (only applicable in case of the zero - coupon bond case) is by 
making use of a direct expansion technique. 

The conditioning factor based method is then used to approximate 
the price of the bond (in fact the lower bound to the price of the bond) 
for the case of coupon carrying bonds - both non -defaultable as well 
as defaultable ones. 

Finally, the conditioning factor method is used to value European 
options on assets with stochastic volatility. The approach used is not 
one based on numerical solutions to partial differential equations but 
rather on an approximation to the price of the option that can be arrived 
at using the conditioning factor approach. 

As is shown in the tables at the end of the paper, the results obtained 
by using the conditioning factor based approach is quite accurate - in 

fact in some cases it is exactly equal to the true prices themselves. 

INTRODUCTION 

Bond valuation has been one of the most important aspects of finance, 
especially with stochastic interest rates. Another important problem that deserves 
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26 Basu Dassios 

particular attention is the issue of pricing of options on assets with stochastic 
volatihty. In this paper, we look at some problems related to these issues. 

The first of the two problems is that of pricing a bond (first a zero coupon 
bond and then two cases of the coupon bearing bond - non defaultable as well as 
defaultable) with non-negative interest rates. We assume a log-normal model for 
the interest rate, thereby ensuring non-negative interest rates. Thus, the 
instantaneous rate of interest r (interest rate process) is defined by 

rs = and = 

where 6 is a scaling constant, {Y^; O < s< 77 is a Gaussian process with 
zero mean and /î  is the drift ofX^. The price of a zero coupon bond is given by 

where is as defined earlier. The exponential nature of the model ensures 
that interest rates do not go negative since negative interest rates are unrealistic 
and could lead to undesirable consequences, as outlined by Rogers (1995). This 
can be put in the framework of Heath, Jarrow and Morton (1992) and is also an 
extension of Black and Karasinski (1991) and Black, Derman and Toy (1990). 

The second problem is that of valuing European call options on assets with 
stochastic volatility. 

Thus, we have 

dX =rX,dt + ae'^Xt [)dBl" + V ^ ^ d B ® ], (2) 

dV,=ndt + dB('\ (3) 

or dV,=-aV,dt + dB^'^ (4) 

where Xj is the price process and V^ is the volatility process, r is the rate of 

interest and B̂ '̂  and B® are two independent standard Brownian motions. The 
volatility process V̂  can follow a simple Brownian motion (equation (3)), 

being the drift of the Brownian motion or an Omstein - Uhlenbeck process 
(equation (4)), a being the force of mean reversion the Omstein - Uhlenbeck 
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Bonds and Options Valuation using a conditioning factor approach 27 

process. Further, p is the correlation between V̂  and the logarithm of^^. hi this 
situation, the interest rate r is treated as a constant. Here, we are interested in the 
price of an European call option given by 

(5) 

where b is the strike price of the option is calculated, X̂^ is the current price 

of the asset and X=£nj^ 

The common strand is that both problems essentially involve the evaluation 
of some functions of integrals of log-normal processes. We now look at the ways 
to solve these problems. The most standard way to solve these problems have 
been by the use of numerical solutions to the relevant set of partial differential 
equations. This may not only be inaccurate but also time consuming and hence if 
possible should be avoided. We thus look at a new way of solving these problems-
we make use of a conditioning factor approach. 

The paper is structured as follows: we first look at some of the work done 
already in this area and then briefly discuss the concept of the conditioning factor 
used and then go on to identify the use of the most appropriate conditioning 
factor. Having identified the conditioning factor, we look at pricing of the zero 
coupon bonds followed by pricing of coupon bearing bonds. We finally discuss 
the issue of pricing of the European options. The results of each of the cases are 
detailed in the various tables given at the end. 

PREVIOUS WORK 

The last 30 years has seen a lot of work relevant to what we are discussing 
here. Some of the more important ones are briefly outlined here. Notable work 
on modelling interest rates and pricing of bonds have been carried out by Vasicek 
(1977), Black, Derman and Toy (1990), Black and Karasinski (1991), Hull and 
White (1990, 1993, Fall 1994, Winter 1994, 1996) and Heath, Jarrow and 
Morton (1992). All these papers mentioned above model the interest rate as 
either a normal distribution or a log-normal distribution. The choice of a log-
normal distribution of interest rates have also been used by Goldys, Musiela and 
Sondermann (1994), Sandermann, Sondermann and Miltersen (1994) and Brace, 
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28 Basu Dassios 

Gatarek and Musiela (1997). However, the basis of research in this field has not 
been restricted only to the Gaussian set-up - the most significant work looking at 
the term structure of interest rates in a non- Gaussian framework is by Cox, 
Ingersoll and Ross (1985). Most of the contributions referred above deal with 
the one - factor model. However, work has been done on the multi -factor 
model as well; prominent among them are Duffie and Kan (1994,1996) and 
Longstaff and Schwartz (1992a, 1992b). 

In terms of research in option pricing, one of the earliest pioneering works 
in this field has been by Black and Scholes (1973) followed by Merton (1973), 
Rubenstein (1976), Hull and White (1987), Rogers and Shi (1995), Heston 
(1993), JarrowandRudd (1982), Stein and Stein (1991), Wiggins (1987), Willard 
(1996) and Romano and Touzi (1997). Note that while Black and Scholes, 
Merton and Rubenstein assumed a constant volatility of the price process, this 
assumption may not be the most realistic assumption - in most practical situations, 
the volatility of the price process is stochastic in nature (either a Brownian motion 
or an Omstein - Uhlenbeck process). This general framework was introduced 
by Vasicek (1977). Baxter and Rennie (1996) outlines a number of modifications 
to the volatility process used. The work of Harrison and Kreps (1979) and 
Harrison and Pliska (1981) on the use of martingales and stochastic integrals in 
financial applications, especially in the securities market and in continuous trading 
is also very important. 

CONDITIONING FACTOR 

We now discuss the concept of conditioning factor that we are going to use 
to solve the problems defined earlier in equation (1) and equation (5). The idea 
of a conditioning factor was first proposed by Rogers and Shi (1995). For any 
convex fimction/ 

E(f(Y))^E(E(f(Y)IZ))>E(f(E(YIZ))). (6) 

The first part of equation (6) is trivially true while the second part is Jensen's 
inequality. Thus, one can easily obtain the lower bound to the fianction - in the 
cases we discuss, the fianction,/ is the price of the relevant product. 

This is similar to Rogers and Shi and in their case, the fiinction / w a s 
f f x ) = max(x-k, 0). The main concern here is about the choice of Z, the 
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Bonds and Options Valuation using a conditioning factor approach 29 

conditioning factor - we discuss ways to select Z later in this section. The Z used 
by Rogers and Shi is of the form 

J o 
Bds. (7) 

According to Rogers and Shi, they had investigated numerically several 
possible choices for Z, some of them bivariate. However, they found that the 
best choice was the one defined by equation (7). Now, the lower bound on 
equation (6) is not guaranteed to be good. However, the estimate of the error 
can be made using the following approach. We have, for any random variable U, 

0<E(U^) - E(Uy <j ^Var(U), 

Thus, using this, one can find the upper bound to the price. As a follow up to 
Rogers and Shi's work, Thompson (1999) has developed a method to refine the 
upper bound to the price of the Asian option. 

Basu (1999) has provided with a mathematical justification to the choice of 
Z, the conditioning factor. It is indeed a fact that the form of Z defmed by Rogers 
and Shi does work out to be the most accurate conditioning factor in terms of the 
error committed (the error is the least by using this form of a conditioning factor). 
In fact, in the general case, the conditioning factor, Z can be written as 

rT rYsds 
Zocf Yds=^z= 

J o ' 
Jvsrf^fJ.Y.ds) 

where {Y^;0< s< T} is a Gaussian process with zero mean and variance 
of 1; i.e. Z ~ JV (0,1) distribution. We shall use this form of the conditioning 
factor as defined in equation (8) throughout the rest of the paper. In some cases, 
we might need to make some modification on the form of Z - we shall highlight 
that in the relevant cases. Also, for all calculations in the paper we assume, without 
loss of generality, T- 1. 
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PRICING OF BONDS 

Zero Coupon Bonds 

We first look at pricing of zero coupon bonds - bonds that make only one 
payment at maturity. The primary method of pricing is based on using the 
conditioning factor as defined in equation (8). However, we also look at the 
alternative method by a direct expansion technique. 

Pricing using conditioning factor 

We adopt a log-normal model for interest rates similar to the approach of 
Goldys, Musiela and Sondermann (1994), Sandermann, Sondermann and 
Miltersen (1994) and Brace, Gatarek and Musiela (1997). The log-normal model 
ensures that the interest rates cannot go negative. 

Let the instantaneous rate of interest r be given by 

where Ŷ  is a Gaussian process with zero mean and the variance - covariance 
given by 

is the drift of Ŷ  and is deterministic in nature. Also, 6 is a scahng factor 
whose importance will become apparent later. This can be put in the framework 
of Heath, Jarrow and Morton (1992) as shown by Baxter and Rennie (1996) 
and is also an extension of Black and Karasinski (1991), Black, Derman and 
Toy (1990), Hull and White (1990) as well as a modification of Vasicek (1977). 

A generalized version of the problem is the calculation of 

where,/is a convex fiinction. Thus, in particular the price of the bond 
(/(jc) = is given by 

^ l ^ e x p f b l ' e x p C X + i ^ J d s J . (9) 
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We look at pricing the bond by using the conditioning factor described in 
equation (8) - in effect we calculate the lower and the upper bound of the price 
of a zero coupon bond explicitly; the true price has to be between the bounds 
and if the bounds merge than the common value is the true price. Now, using 
equation (6) and the conditioning factor Z as defined in equation (8), we can 
obtain the lower bound to the price of the bond. In case of the zero coupon 
bonds, the upper bound to the price can be easily obtained as shown later. 

Now, conditionally on Z, F' is a Gaussian process with 

E(YJZ)=kZ, (10) 

f^Cov(Y^,YJds 
where ^ = Gov (Y^, Z) = ^ , (11) 

IVari f x . ds 

and Cov(Y^,YJZ) = o ^ ^ - k X = K. say. (12) 

We are interested in calculating a lower bound (LB,) and the corresponding 
upper bound (UB,). We do that by considering the following argument. There 
exists some random variable ^ such that 

E(/(X)) = E[{(E(X IZ))] + E[(X - E(X / Z)) r(E(X / Z))] + i E[(X - E(X / Z))' , 

E[/(E(XIZ))J<E(/(X))<E{/(E(XIZ))J+^E(X-E(XIZ)ysupr(x) . 2 xio 
Thus, in the case where f(x) = , a lower bound is given by 

hB=E[f(E)(X)/Z))] (13) 

and an upper bound is given by 

UB, = LB, + ^ E (Var (X/Z)), (14) 

since sup /"(x) = b^. Also, here X=f' e ^^ ds Thus, 
x>0 •'0 
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2 

(15) 

Let us define 

h(z)=E(f^ dslZ)=f^ du (16) 

where Z~N(0 , l ) . The lower bound to the price of the bond is given by 

= / > ' * " ' 0 7 ) 

and the corresponding upper bound is given by 

r i „ . ,, 1 b^ r' r' UB,=LB, + y / j „ e x p (e"'"'-l)d\)dM 

(18) 
Finally, to calculate the bounds defined by equations (17) and (18), we 

make use of a numerical integration procedure. 

We present the exact form of k̂  and w^ (where k̂  and ŵ ^ is defined by 
equations (11) and (12) respectively) for three special cases; first the Geometric 
Brownian Motion, then an exponential fimction of an Omstein - Uhlenbeck process 
with the initial value known and finally when the initial value of the Omstein -
Uhlenbeck process has a stationary distribution. Once these are known for each 
of the cases, the corresponding bounds can be easily obtained by substituting in 
equations (17) and (18) and finally carrying out a numerical integration. 

Simple Brownian Motion case: In this case, we have, 

r,=be'"''' and Y,=aB„ (19) 

where 5 is a standard Brownian motion, t = 1 and 6 = is the initial value 
of the interest rate. 
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The bond price is 

E[exp(-b f'exp{<TB^ + as}ds)]- (20) 

IpB^ds 
The conditioning factor is Z= / where 5 is a standard 

^Varl B,ds) 
Brownian Motion. Here, (T = g ^(u a a = a ^u. Also, u = au. 

' UV ^ ^ UU ^ ' U 
Now, 

Var( f Bds)=\^k =Cov(5, Z) -V3 a [" {\-s)ds= Sa{u-—). 
Jo 3 " ^ 2 

(21) 

Conditioning on Z, / is a Gaussian process with 

E{Y}Z) = \lu + kZ, (22) 

and Cov(7, Y}Z) = a^ (U A v) - k^ = H'̂ ,. (23) 

Ornstein - Uhlenbeck Process - Initial Value is known: Now, let us 
consider the case where the interest rate {r ; 0 < ^ < 1} is governed by an 
exponential function of the Ornstein Uhlenbeck process {7 ; 0 < 5 < 1} with the 
initial value Y„ known and assumed to be 0. The interest rate model is thus defined 

0 

as 

r = be '̂ , 

where 7 is the solution of the stochastic differential equation 

dY^ = -aYfit + cdB^ Y= a f^' e - " ( 2 4 ) 

B^ is a standard Brownian motion and t = 1 be^' = ê "''̂  ; 
0 < / < 1}. Thus, in b is ihe long term mean of the logarithm of the interest rate 

process; hence, be ̂  ^̂  is the long term value of the interest rate. Also, b = r^^, the 

initial value of the interest rate. In this case, a = — [ĝ î -vi + Further, 
"" 2a 
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f'v^ds 
and the conditioning factor is Z = 

w , , )/ I Jo 

We thus have, 

ct' la + ^e-" -e-^" -3 ri a la+ -e -3 
Var ( I Yds) = — = V, say (25) 

and 

+ 

So, conditional on Z, 7 is a Gaussian process with 

E(YJZ) = ^ Z, (27) 

and Cov(y;, rjZ) = - - = . (28) 

Ornstein Uhlenbeck process - Initial value has a stationary 
distribution: The initial value of the process has a stationary distribution, the 

distribution being N (0, — ) . Here, Y is the solution of the stochastic differential 
2a 

equation 

dY = -aYd+odB, => Y = a f dB (29) ' ' » * * J —CO " 

where B^ is a standard Brownian motion and t = 1. Now, 

Thus, in b is the long term mean of the logarithm of the interest rate process. 

Hence, bê  is the long term value of the interest rate. Also, ~ ^ ^ °" 
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lo and|X = 0 and the conditioning factor is Z= , ^ .Note that in 
Y,ds) 

this case 7 ranges between (-<», 5) unhke (0, s) in the earher case of the non-
stationary Omstein Uhlenbeck process. Thus, we have 

c^ a + e""-! /•/ c a + e - 1 
Var( I Yds) = = V̂  say, (30) 

and 

1 a'A-e"" 1 
= + — ( 3 1 ) 

Once again, we have that given Z, F is a Gaussian process with 

E(YJZ) = kZ, (32) 

and say. (33) 

Note: In all these three cases, once we have the values fork^, E{YJZ) and 
Var(7 ,̂ YjZ) and further = at for the Brownian motion case, we can easily 
calculate the bounds to the price of the bond. The results are shown later. 

Pricing via direct expansion 

To compare the results that we obtain by using the conditioning factor, we 
calculate the bounds to the price of a zero coupon bond using a direct method 
for finding bounds. In this case, we use a Taylor series expansion and the fact 

that forx>0, we have I -x+ — ,€" > l - x + — , and 
2 2 6 

so on. We will use the last two inequalities as the bounds suggested are very 
close to each other. Here, we have. 
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1 - W, + ^ b%- - < " ] < 1 - 6/, + ^ b% (34) 
2 6 2 

where, is a ^̂  order integral and is given by 

K = ^ = 0 ,1 ,2 , . . . . (34) 

Thus, the lower bound is given by 

and the corresponding upper bound is 

(35) 

(36) 

We obtain the expressions of/ , , and/j for the same cases used earlier 
and in this case denote the upper bound by UB^ and the lower bound by LB .̂ 
The results are shown later 

Simple Brownian Motion case: Here Ô^ = cs^s, c^^ = a^(u A s) and 
|X = as. Thus, 

^ / k p 1 J as +—a s ds, /. = 2 / / / / x p 3 2 1 2 as + au +—c S+-C! u 
2 2 

^ 
dsdu 

aM + av + a5 +—o^M + + + \dsdvdu. 1 2 
. .. - a v-l— 

2 2 2 

Ornstein - Uhlenbeck Case - Initial value follovnng a stationary 

2a 
o' a 

distribution: In this case, u = 0, Var(y) = — =a , and Cov(7. Y) = 
2a 

.Thus, 
JJV ' 

- c^ —c-" 
/j =e22a , y^(1 - w) cfw ^ 
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r' - ^a^ 
and l(l-r)lcxp dwdr 

2a[ 

Ornstein - Uhlenbeck Case - Initial value is known: This is the non-

Stationary Omstein-Uhlenbeck case with fx̂  = 0, Var(r) = — (1 - e'^') and ^Cl 
2 

Cov(r, Y) = ^ - e - c - ) = So, 

2a 2 2a 2« rl g^ /•' f" 
1^=1 e' 2. I e 

For all these cases, once we have /,, and we can easily calculate the 
bounds to the prices using equations (35) and (36). 

Comments of Zero Coupon Bond Pricing 

The lower bounds to the price of the bonds calculated by using the 
conditioning factor are so close to the actual price (in some cases, the simulated 
prices were lower than the lower bounds) that they can be regarded as a very 
good approximation to the true value. This is true for all situations. 

An advantage of using a conditioning factor in the calculation of the bond 
prices is that the method works even for large values of cj. This is not the case 
when using the direct expansion method; here, for higher values of a, the values 
start diverging quite fast, thereby causing the whole system to break down. Further, 
the method using conditioning factors can be easily modified to calculate the 
value of a contingent payment defined on the price of a bond which is not possible 
in the case of the direct expansion technique. 

Coupon Bearing Bonds 

We now look at the situation of the bond making coupon payments during 
the life of the bond. Note that the coupon is payable at a continuous rate. We 
look at two cases in particular: 
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• Non-defaultable Bonds: These are essentially sovereign bonds in domestic 
currency, which pay all coupons during the life of the bond as well as the 
principal on maturity - in other words the default risk is zero. 

• Defaultable Bonds: These are bonds with some positive probability of default 
- essentially the corporate bonds in the markets. 

We use a conditioning factor as defined in equation (8) to find a lower 
bound of the price of the bond. The interest rate is assumed to be governed by a 
stochastic process - here, we assume the stochastic process to be an Omstein -
Uhlenbeck process where the initial value is known. The results are veiy similar 
for the interest rate process following any other stochastic process, the 
methodology being exactly the same. 

Pricing of Non-defaultable bonds 

Here we want to calculate, 

E + e-^'^"'"] = E ds\+ E [e"/''̂ """ J , (37) 

where, E CJ^ is the value of the coupon and E is the 
value of the principal. 

As before, 

r = and 
where, r̂  is the instantaneous rate of interest, a the instantaneous variance 

and F is an Omstein - Uhlenbeck process with the initial value known and assumed 
to be 0.6 is a scaling constant. Also, b = r,̂ , the initial value of the interest rate 

IE! 
and hê  ̂ ^ is the long-term value of the interest rate. 

Further, C is the coupon rate and b is the discount factor. 

Here, the two quantities that we want to calculate are; the value of the 
coupon payments and the principal. The calculation of the value of the principal 
is exactly the same as calculating the value of a zero coupon bond, the details are 
discussed in the previous section. To calculate the value of the coupon payments 
we again make use of a conditioning factor, slightly adjusted from the form 
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described in equation (8) - essentially adjusting for the continuous coupon 
payments and is given by and with T=l,we have 

VarijJ-y^sdO 

As stated eariier, {Ky; 0 < ̂  < 1} is an Omstein - Uhlenbeck process with 
the initial value Ŷ  = 0. 

Calculation of interest payments: Once we have obtained the conditioning 
factor as above, we can then easily calculate the value of the coupon payment. 
We have, 

Var( f^ Yduds) = ^ [3 - - Mae-" - + 6a] = V^^ say. 

Further, Zj is distributed as a standard normal variable. Conditionally on Ẑ , 
y is a Gaussian process with 

= (38) 

where k̂  = Cov(r, Z,) = ^̂  (39) 

Also, Cov(7, rjZ,) = Cov(r, Y) - kX = ^ - ] - kX = ^^ say. 

(40) 

Once we have these values, then we can easily calculate the value of the 
coupon payments. So, conditionally on Z,, we have the lower bound of the value 
of the intermediate payment given as 

c / ^ ' e x p f - 6 / / e x p ds du = C/j, (Z.) say. (41) 

Finally, the lower bound of the value of the bond is given as 
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1 .£l 
' dz+ Value of Principal = C//, + H^, 

where C is the coupon rate, C//, is the value of coupon payments and Ĥ  is 
the value of the final payments. 

Pricing of defaultable bonds 

Next, we discuss the case where there is a non-zero probability of defauh 
taking place; however, as is observed in practice, the probability of default is 
generally quite small. Work in this area has been done by, among others, Lando 
(1997) and Duffie and Singleton (1995). The assumption here is that in case of a 
default all payments cease (including coupons) and a certain percentage of the 
value of the bond at maturity (known in advance) is paid out, else all coupons as 
well as the fiill value is paid on maturity (in case no default happens). The analysis 
here has been based on coupon paying bonds; zero coupon bonds can default 
only at the time of final maturity and can be treated as a special case of coupon 
paying bonds. 

Here, we are interested in calculating 

E [-D /"^(e " //-""XJrfi + Ce + f\e "'du)e L^'-'"X^ds) 
Jo Jo J 0 

+ (42) 

where and Y= ( ' . 
I I Jo s 

Here, is the rate of default and Ŷ  is a non-stationary Omstein - Uhlenbeck 
process, r is the interest rate which is assumed to be constant, a is the instantaneous 
variance. Further, D is the percentage paid out in case default occurs, C is the 
rate of coupon payments during the life of the bond and 6 is a scaling factor, 
representing the discount rate. The terms in equation (42) represent the following: 

E [ d J = Payment at default. 

E [e 'e"'' i' J = Final payment on maturity, when no default takes place. 

E[cJ\f^e"du)e = Coupon payments in case of default. 
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rT /•'• 

E C e~"'du (e" ) = Coupon payments in case no default occurs. 

Like earlier, taking, T = 1 equation (42) can be rewritten as 

41 

{D - C) jy^e-' ^^^"'-'"be'^'^ds + ^ (43) 

r 
+ (l--)e-'e 

r 
lYuOu 

Substituting this in equation (43), we have 

(D - C) + (1 - V P. H • (44) 

What we are interested in calculating is the first term of equation (44) - the 
value of the payment that is made in case of defauh. The second term of equation 
(44) gives the value of the bond, assuming no default - that is calculated using the 
same approach as used earlier in the case of the non-defaultable bonds without 
any coupon payments. Now, to calculate the value of the payment if default 
occurs, we need to calculate the fû st integral of equation (44). 

We need to use a suitable conditioning factor (similar to the one defined in 
equation (8)) for each of the two integrals shown in equation (44). For the second 
integral, the conditioning factor is exactly the same as that in the zero coupon 
case. This is given by 

Z* = IM 
The conditioning factor for the first integral in equation (44) is given by (for 

details see Basu( 1999)) 
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Z" = / o ' ^ ^ 

Note that Z* and Z" are exactly the same and thus the same conditioning 
factor (Z) can be "used for both the integrals, where, 

Z = Z* = Z". 

Calculations for defaultable bonds: Once we have obtained the 
conditioning factor as above, we can then easily calculate the value of the interim 
payments. The conditioning factor Z, given above, is exactly the same as the one 
in the zero coupon case. Now, conditionally on Z, Ŷ  is a Gaussian process with 

E(YJZ) = kZ (45) 

1 a ^ l - g - " " i-e""'!-"' 
a 

} (46) 

where V is defined as in equation (25) and 

o 
Cov(7, y jz )= = . (47) 

Once we have these values, then we can easily calculate the value of the 
first integral. 

So, conditionally on Z, we have 

//e-™ expf-^Z/exp k7 + -w, ds b- exp du = h^{Z) say 

(48) 

Finally, using equation (44) an approximation to the price of the bond with 
non-zero probability of default is 

2 \ 
^ e ^dz 

y[2n 
,, C (r. + 1 — • — • D- — 1 - — 

I r r 
\ y r V y r 
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where H^ is the expectation of h^(Z) with respect to Z andH^ is the value of 
the second integral of equation (44) [similar to valuing a zero coupon bond, as 
discussed earlier]. 

C 
Note that the term (D ) can become negative depending on the choices 

r 
of Z), C and r. That is why the price obtained using this term will not be a lower 
bound to the price - but just an approximation to the price. However, as is 
evident from the results the approximation is a very accurate one. 

Comments on Pricing Coupon Bearing Bonds 

The lower bounds to the price or the approximation to the prices calculated 
using the conditioning factor are so close to the actual price that they can be 
regarded as a very good approximation to the true value. This is true of both the 
situations discussed - bonds having a zero probability of defauh as well as bonds 
having a non-zero probability of default. Note that in these cases, the values 
could not have been calculated by a direct expansion. 

PRICING OF EUROPEAN OPTIONS 
We now look at the problem of pricing European call options on assets with 

stochastic volatility. Problems of this nature were addressed by, amongst others, 
Hull and White (1987). They observed that using a simple log - normal model, as 
used by Black - Scholes (1973), frequently overprices the price of the asset. 
The price of an asset with stochastic volatility, according to Hull and White, 
under an equivalent martingale measure [see Harrison and Krepps (1979) and 
Harrison and Pliska (1981)] follows the following stochastic process; 

^ / 
dX̂  = rX̂  d t + o e ^ X,[pdBj'^ + VI" p' '] (49) 

dV = [idt+dB^'\ (50) 

where X̂  is the price process, o is the instantaneous variance of the price 
process and r is the rate of interest, which is a constant. V^ is the volatihty process 
and )X is the drift of the Brownian motion defining the volatility process. The 
volatility process could also follow an Omstein - Uhlenbeck process (as used by 
Stein and Stein (1991)) and is represented as 
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dV = -aVfit+dB]'\ (51) 

where a is the force of mean reversion of the Omstein - Uhlenbeck process, 

and Bf'̂  are two independent standard Brownian motions and p is the 

correlation between F and the logarithm oiX .̂ 
We want to calculate the prices of European call options on assets with 

stochastic volatility. Mathematically, it is given by 

X , {e -E{e ' r -br ]= f {Y; ) say, (52) 

where b is the strike price of the option, r is rate of interest, X^ is the current 
\ 

, where X̂  is the price process described by price of the asset and Y^ = In 

equation (49). 

To calculate the price of the call option, we use a conditioning factor 
approach similar to Rogers and Shi (1995) and Basu (1999). The form of the 
conditioning factor used is as described in equation (8). Note that in this case the 
functionf defined by equation (52) is not convex and hence Jensen's inequality 
cannot be used. We however proceed with the process and what we obtain is an 
approximation to the price of the call option itself, rather than the lower bound to 
the price of the option. 

We look at two cases of the volatility process - the first is when the volatility 
process follows a Brownian Motion and when it follows an Omstein - Uhlenbeck 
process. In all cases, we take T= 1 and Y^^ = 0. 

Volatility following a Brownian Motion 

In this case, the stochastic volatility process and the price process is explicitly 
defined as in equations (49) and (50) and |X=0. We are interested in finding the 
value of the fimction defined by equation (52). Thus, carrying on from equation 
(49) we have 

= d B l ^ ' y l ^ e ' d B f ' d s . (53) 
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Conditionally on the paths of , 0 < ^ < 1}, we have , ^ 
a y ^ y l - p ^ e ^ dBf^ following a normal distribution with zero mean and 

variance (a^ (1 - p^) ̂  e*®'" cfe) and following a nomial distribution with mean (r-^ o^P+paQ) and variance (a^(l-p^)P), where 

and 

Note, Q consists of a stochastic integral and to calculate the stochastic 
integral we need to express it terms of time integrals. Using Ito calculus, we have 
(for details see Basu (1999)) 

Q = / ^ x p 2 2 •'0 
ds 

2 v 
• (54) 

The second term of equation (54) is similar to P, the only difference being 
k that in the exponent k is replaced by — and thus it can be calculated exactly the 

k same way as P, replacing ^ by —. 

We suggest an approximation approach as given by the following lemma: 

Lemma: Let P, Q and Z be random variables. Also, let <y and p be 
constants. Then, assuming 

1. a is small 

2. (d^P, poQ) is a function such that it is at least twice 
differentiable andpiecewise continuous 

3. Z is used as a conditioning factor and is suitably 
normalised 
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we have 

£(i|/ (c'P, poQ)) = Ef^v {c'EiP\Z), pa£(e|Z))] 

+ ̂ pc'E{\^^^(a'E{P\Z),paEiQ\Z))War(Q\Z)}+0{&). (55) 

For the proof to the lemma, see Basu (1999). Note that indicates the 
second derivative with respect to the second argument of \|;. 

In this case, let us define 

\\f{a^P, paQ) = {e''- by ^ max[( e''-b), 0], 

where ,P,Q,o and p are defined earlier. Also, paQ) is piecewise 
continuous and dififerentiable and hence the second derivative of V|/(a^P, poQ) 
exists. We are interested in finding 

E[\\i{c'P, poQ) - £:( e - by = E[max{{ e - b), 0)] = 

exp r--a-p-P+paQ <D 
r + ̂  a'P(l - 2p') + paQ - inb 

-AO 

(56) 

Equation (56) represents the first term approximation to the price of the call 
option. To calculate pcQ)], we make use of the Lemma - we first 
calculate S2(Z), where 

a{Z) = Mf{o'E{P\Z),paE{Q\Z)). 

However, the first term alone does not approximate the price well enough. 
So, we need the second term in Lemma - we call that term the Correction 
Factor. This term involves the second derivative of poQ) with respect to 
gand is given by 

exp r + pog-^o^p^/' 
r + paQ + -a\l~2p^)P-l!nb 
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r + p o g - ^ o V P 
+ —, exp (57) 

To obtain the correction factor we define 0 (2) as 

e (Z) = ^ p^aVgg (P|Z), pa£(e|Z))Var(e|Z). 

This is exactly the same as the second term in the Lemma. 

To get the value of the option, we need to obtain the unconditional value of 
Q(Z) and Q(Z). Note that Z is the conditioning factor defined by equation (8) 
and has a standard normal distribution. The exact form of Zused in this case is 
defined as 

Z = 
l>sds 

(58) 

To calculate the value of the option, we need to calculate E(P\Z) and 
E{Q\Z) as well as Var(2|Z) to be able to obtain Q(Z) and 0(Z). 

r' 1 Now Var( Bds) = - . Thus, we have E{BjZ) = jZ where 

= C o v ( 5 ^ Z) = V3 (" - Y ) and C o v ( 5 ,5JZ) = (M A v) - j j ^ = (59) 

Once we have these values, then conditionally on Z, we can then easily get 
the expected values of P and Q. We have 

E{P\Z)= / / exp du (60) 
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mz)= 
exp kJiz + kll-] 

2 2 ^ ^ 4 8 
- 1 

k 
2 

k fi f k - r ^ k ^ 
du (61) 

- Conditionally on Z, Q (Z) = \|/ (ci^E(P\Z), ^aE{Q\Z)) 

= exp r~Wp^E{P\Z)+paEiP\Z) 4) 
r + ̂  a^EiP I Z)(l - 2p') + paE{Q \ Z) - inb 

-64) 
r -1 IZ) + \Z)-£nb 

(62) 

To calculate the price of the option, we also need Q(Z) for which we need 
to calculate Var(e|Z) and \|/gg(\j/^£:(P|Z), ^<5E{Q\Z)). Now, continuing from 
equation (57) and equation (59), we have 

exp 4> 
r + po£(e IZ) + ̂  o'(l - 2p' )E{P \Z)-(.nb 

^a\l-p')EiP\Z) 

r + paEiQ\Z)-^ci'p'E(P\Z) 
+ 1 exp 

V2a'7i(l-p')£(P|Z) 

ir + paE{Q\Z) + ^a\\-2p')E{P\Z)-(nbf 

2a\\-p')E(P\Z) 

Also, 

Var(0|Z)= 
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kB, 

Where, V a r ( ^ ^ | Z ) = A 
• ^ ^ ^ ' g 2 _ e l 6 ) 

/•' ^^ r' r' 1 ri (ic k^ 
-Uu + y ' v ) z + + 5 v v ) 

fk' ' - 1 exp 4 - 1 
-

T 
V / _ 

tA rI tdH r' 
and Cov(e ' , e ^ 1Z) = exp 

A: ^ 
- ( a +7] + Y + '̂ n ) + ^ 

r Szk k^ 1 r' (k k' ] 
du exp — + — 2 32 

V / 

j^exp du 

Having obtained these values, we can easily find the value of the correction 
factor 0(Z), conditionally on Z, given by 

0(Z) = ^ pW^vJicnP\Z), p(yE(Q\Z))War(Q\Z). 

Finally, to calculate the value of the option we calculate the sum of the 
expectations of Q(Z) and 9(Z) with respect to Z adjusted for the current asset 
price and the interest rate i.e. we calculate 

lOOe-

(63) 

where //, is the first term approximation to the price, H^ is the associated 
correction factor andX^ is the current price of the asset (we assume = 100). 

The Ornstein - Uhlenbeck Case 

In this case, we have the volatility process following an Ornstein Uhlenbeck 
process and the price and the volatility processes are defined by equations (49) 
and (51) respectively. The rest of the parameters are similar to the case of the 
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Brownian motion case - the only additional term being a - the mean reversion 
force of the Omstein - Uhlenbeck process. As before, we are interested in finding 

where b is the strike price, X^ is the current price of the asset and 

Y^ = ln{ —'-), X^ being the price process. This implies 

Y^r + al pe ^ dB^J^ + a l y f l ^ e ^ dBl'^-Wl e'^'ds (64) 

Again, conditionally on the paths of 0 < 5 < 1}, we have 

r' I ^ o yjl-p^e ^ dBf^ following a normal distribution with zero mean and variance 

e'^'ds and follows a normal distribution with mean A and 
variance Y?, where 

A = + (65) 

= -p2) f^e'^'-dt (66) 

Let us, as in the case of the Brownian motion, define 

I I ^ 
P = j^e'^tdt and Q = 

Thus,.4=r--^o^/'+pa0and2?=o^(l - p̂  We again make use oflto 

calculus to express Q, a stochastic integral, in terms of time integrable terms. We 
thus have. 
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^ / • ' (kV. 
2 V / 

exp KV, - 1 

k 
2 

2 
V / 

r' f ui/ \ kV. 

V 2 , 
dt 

(67) 

Also, as before, let us define 

where 7, is given by equation (65). Again, we are interested in finding 

paQ)] = E{e''-by = exp A + — 
2 

A + t'-tnb -bO A-lnb 

I T 

= exp(r-p^P+0)4) 
r + 1 a'/'(l - 2p') + pog - enb 

(68) 
Equation (68) represents the first term approximation to the price of the 

option. To calculate p a 0 ] , we make use of Lemma. Thus, we first 
calculate Q.{Z), where 

Q(Z) = ii/(a^£(P|Z),pCT£(e|Z)). 

However, as stated earlier, the first term alone does not approximate the 
price well enough. Thus, we also need the second term of Lemma - in effect the 
Correction Factor 0(Z) defined as 

0(Z) = \ p^aVgg {o'E{P\Z), ^oE{Q\Z)) Var(e|Z). 

This is exactly the same as the second term in Lemma. 

To get the value of the option, we need to obtain the unconditional value of 
Q(Z) and 0(Z). Note that Z is the conditioning factor defined by equation (8) 
and has a standard normal distribution. 
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The exact form of Z used in this case is defined as 

^Var(v^ds) 
(69) 

where 

V a r ( / ; V d s ) = / ; 

Thus, we have,E{VJZ) = jZ, where 

J = Cov(F,Z)=^ 

2a' 

2 e ''"{cosh(au) + sinh(au)}-e "" -e ''sinh(aM) 
L I J) V 

a yl2a-{l-e-''){3-e-'') 

alu-vl ~a(u+v) 
and Cov(F, rjZ) = Cov(F, F ) = ^ (71) 

Once we have these values, we can easily calculate the values of E{P\Z) 
and E{Q\Z) given by 

exp 
-2 ^ 

du, (72) 

E{Q\Z) = 

exp kLZ k^ + — 
2 8 

1 "I ' 
i ^ f 

2a 
- 1 

k 
2 

Jo 4 
exp k . ^ k ' du 

+ 
Jo 

l-e -2au 

2a - j : exp 
2 8 

l - e 
-2au 

2a 
du (73) 
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(i-e-y 
where L = ——^ and B = 

Thus, conditionally on Z, we have 

S2(Z) = exp r~aYE{P\Z)^QoE{Q\Z) 

i 

r + i I Z)( 1 - 2p') + paE{Q \Z)-enb 

r - ^ a'EiP IZ) + paE(Q \Z)-inb 

4O\\-9')E{P\Z) 
(74) 

To price the option, we also need conditionally on Z 

e(Z) = ^ pa^(0|Z)) Var(0|Z). 

For this, we need the terms Mf QQ{a^E{P\Z), poE{Q\Z) and Var(0|Z). 

Now, 

exp 

r 1 
r + - a^E{P IZ) (1 - 2p') + pa£(e | Z) -

<D 

exp(/- + pCT£(e IZ) - - | Z)) 
+ y ^ exp 

V2cT'n(l-p')£:(/'|Z) 

(r + ̂ I Z)( 1 - 2p̂ ) + i>aE{Q | Z) - ̂ nb)̂  

and 
k ak 

Var(eiZ) = / , + - + + 2a - - -
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\ = ex exp 
kUl-e^'" 

2a 
-L' - e x p 

4 la 

I3 = 
kr e 

exp 
4 " 

V 

dudv. 

exp 
4 V y 

5,.. - 1 dtdu 

l4 = 

lo fo + + 

X 
{7,z + I (5„ + 5 J } a z + I (5„„ + ̂  

k 
- e x p •dt 

1 r' 
—r / exp 

T 

k (k e k' 

2 

exp 
Y ' k 1 

dsdt 

{l-e-"? 
Here L = — and M = , 

2a^M \ 
Var 

2a-(l-e"')(3-e"") 
2a' 

Knowing the values of /,, Î , Î , Î , and we can easily calculate Var(2|Z). 
Further, knowing E(P\Z) (equation(72)) and E{Q\Z) (equation(73)), we find the 
value of the correction factor &(Z). 

Finally, to calculate the value of the option we calculate the sum of the 
expectations of Q(Z) and 0(Z) with respect to Z adjusted for the current asset 
price and the interest rate i.e. we calculate 
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lOOe 

(75) 

where Ĥ  is the first term approximation to the price, Ĥ  is the associated 
correction factor and X^ is the current price of the asset (we assume X^ = 100). 

To illustrate the technique described above, we have repeated the work 
over a number of scenarios with volatility following both a Brownian Motion as 
well as an Omstein - Uhlenbeck process for a host of strike prices, as well as 
values of p. Some of them are highlighted in the tables later. 

Comments on Pricing European Options on Stochastically Volatile 
Assets 

A look at the output from this method show that in all the cases, the calculated 
value of the option, including the correction factor, is very close to the simulated 
value. The values are, in general, more accurate for the case when the volatility 
process follows a Brownian motion. In the case of the volatility process following 
an Omstein - Uhlenbeck process, the lower the value of a the closer agreement 
of the calculated values with the simulated values. Also, higher the value of p, i.e. 
the closer p is to ±1, the greater the contribution of the correction factor to the 
corrected calculated price. 

The biggest advantage of this method is that one can do away with the 
restrictive assumption of independence of the price and the volatility processes. 
In fact, in practice, price and volatility are independent of each other. Also, this 
method is quite fast to use for different values of the strike price. 

Another justification of use of the correction factor is in the approximation 
carried out during conditioning. In the case of the volatility processes, conditioning 

on J^ Bds (or on ^ Vds) does not work so well and leads to an error. 

One probable reason for this is the fact that and J^ Bds (or on ^ ^jds). 

Thus, in both cases, the correction factor is needed to rectify that error. 
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CONCLUSION AND REMARKS 

The methods described here can be used for pricing bonds (both zero coupon 
as well as coupon bearing) as well as European options on stochastically volatile 
assets. In both cases, the solution is not heavily dependant on any numerical 
methods ^ hence the level of accuracy is generally higher and so is the speed of 
calculation. Also, most of the calculation can be easily done on simple machine 
and no high-end sophisticated machines are required. Also, all the solutions, 
though not entirely closed form, is semi-closed form and hence more 
mathematically tractable in terms of error analysis and related analysis. 

Finally, some of the results obtained by this method along with some 
comparative values (obtained through other means) are given in the tables at the 
end. The accuracy can be easily gauged from the closeness of the results shown 
in the tables. 

For the bond case, the approach can be easily extended to the case of a 
"portfolio of bonds". This is particularly important as the "portfolio" can then be 
looked upon as the set of multiple drivers to even a single bond value - something 
that does happen quite often in practice. 

On the option framework, the work can be extended to the case where the 
interest rate can also be stochastic in nature and there is correlation between the 
interest rate process and the volatility process, the interest rate process and the 
price process apart from the volatility and the price process. The work can also 
be extended to the case when the option is of the American type - though the 
calculations in that case might become very complicated and more amount of 
numerical procedures might be needed. 

TABLES 

Here we present some tables with numerical examples of the methods 
described above. Most of the tables are self explanatory with appropriate headings 
and foot notes. 

First we present the results for the zero coupon bond case; table 1 presents 
the Brownian motion, table 2 presents results for the stationary Omstein -
Uhlenbeck process and table 3 is the case of non-stationary Omstein - Uhlenbeck 
process. LB, and UB, refer to the bounds calculated using the conditioning factor 
while LB^ and UB^ are the bounds obtained through direct expansion. 
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a a LBl UBl LB2 UB2 

-0.5 0.1 94.657 94.657 94.629 94.636 

0.5 94.368 94.374 94.342 94.347 

0.75 93.965 93.979 93.943 93.951 

1 93.35 93.375 93.334 93.352 

-0.2 0.1 93.86 93.86 93.839 93.843 

0.5 93.514 93.52 93.497 93.503 

0.75 93.034 93.047 93.021 93.033 

1 92.303 92.328 92.297 92.328 

0 0.1 93.239 93.239 93.224 93.23 

0.5 92.849 92.855 92.838 92.847 

0.75 92.308 92.322 92.303 92.32 

1 91.49 91.514 91.491 91.538 

0.2 0.1 92.534 92.534 92.526 92.534 

0.5 92.094 92.1 92.091 92.104 

0.75 91.486 91.5 91.489 91.513 

1 90.57 90.595 90.581 90.649 

0.5 0.1 91.291 91.291 91.297 91.31 

0.5 90.765 90.771 90.777 90.798 

0.75 90.041 90.055 90.061 90.102 

1 88.962 88.986 88.987 89.11 

Table 1: The interest rate follows a geometric Brownian motion. 
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a LBl UBl LB2 UB2 

0.1 93.239 93.25 93.223 93.223 

0.5 92.859 92.898 92.844 92.853 

0.75 92.342 92.382 92.326 92.343 

1 91.576 91.608 91.561 91.597 

Table 2 : The interest rate follows an exponential function of a 
stationary Ornstein - Uhlenbeck process with a = 1. 

a LBl UBl LB2 UB2 

0.1 93.245 93.246 92.227 93.233 

0.5 93.029 93.031 92.939 92.948 

0.75 92.736 92.749 92.557 92.575 

1 92.308 92.331 92.001 92.043 

Table 3 : The interest rate follows an exponential function of a non-
stationary Ornstein - Uhlenbeck process with a = 1. 

Note: In some cases in tables 1,2 and 3, lower bounds calculated using 
one approach are slightly higher than the upper bounds calculated by the other 
method. This is due to small inaccuracies in the numerical integration procedures 
and indicates how close they are to the actual price. 

Also, in our case the direct expansion works due to the fact that a is small -
it shall break down for large values of a . 

The next set of tables looks at non-defaultable as well as defaultable bonds. 
The coupon rate, C is taken as 5% and the payout in case of default is 50%. 
Also, r in case of the defaultable bonds is taken as 5%. Tables 4.1 and 4.2 
depict the case of non-defaultable and defaultable bonds respectively with a 
short life (1 year) while tables 5.1 and 5.2 give the same results for bonds with 
longer lives (10 years). 
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a a b Calculated Simulated S.E. 

0.1 1 0.07 98.07985 98.05825 0.0027 

0.5 1 0.07 97.68948 97.82111 0.0145 

0.75 1 0.07 97.16662 97.54738 0.023 

Table 4.1 : Table showing the calculated values of the total payments 
of coupon paying bonds along with the simulated values and their 

standard errors where the term of the bond is 1 year and the coupon 
rate is 5%. 

a a b Calculated Simulated S.E. 

0.1 1 0.07 95.7805 95.7549 0.0015 

0.5 1 0.07 95.6761 95.652 0.0078 

0.75 1 0.07 95.5354 95.4768 0.01208 

Table 4.2 : Table showing the calculated values of the payments of 
bonds at default along with the simulated values and their standard 
errors where the term of the bond is I year and and the amount paid 

out in case of default is 50%. 

a a b Calculated Simulated S.E. 

0.1 1 0.07 53.25209 53.17027 0.0104 

Vo.i 1 0.07 52.58027 52.4876 0.0334 

0.5 1 0.07 51.46158 51.37964 0.0537 

0.75 1 0.07 49.1404 49.1597 0.081 

Table 5.1: Table showing the calculated values of the total payments 
of coupon paying bonds along with the simulated values and their 

standard errors where the term of the bond is 10 years and the coupon 
rate is 5%. 

Management Dynamics, Volume 7, Number 2 (2007) 



60 Basu Dassios 

a a b Calculated Simulated S.E. 

0.1 1 0.07 74.6547 74.65141 0.0057 

Vo.i 1 0.07 74.3201 74.3066 0.0179 

0.5 1 0.07 73.795 73.8483 0.0288 

0.75 1 0.07 72.705 72.7103 0.044 

Table 5.2 : Table showing the calculated values of the payments of 
bonds at default along with the simulated values and their standard 

errors where the term of the bond is 10 years and the amount paid out 
in case of default is 50%. 

Note: To calculate the prices of the long - term (10 year) bonds, we use 
the same formulae as in the case of 1 year bonds. However, for calculation 
purposes, we take the term of the bond T = 1 but adjust the other parameters 
accordingly to represent aT= t year bond. Thus, for a bond with a life of t 
years, o^ changes to a changes to at and b changes to bt. In our case, t= 10. 

The next set of three tables (6.1-6.3) present the results for the European 
option price case. Table 6.1 looks at the volatility process being a pure Brownian 
motion while tables 6.2 and 6.3 look at the Omstein Uhlenbeck case. In these 
tables, we compare the Corrected Calculated Price (CCP) with the simulated 
price. 

Management Dynamics, Volume 7, Number 2 (2007) 



Bonds and Options Valuation using a conditioning factor approach 61 

a b Calculated C.F. CCP Simulated S.E. 

0.95 110 2.044508 0.779841 2.824346 2.990192 0.142218 

105 3.497231 0.816586 4.313817 4.453916 0.15819 

100 5.910315 0.672918 6.583233 6.720349 0.174477 

95 9.546253 0.370436 9.916688 10.067917 0.187047 

90 14.09038 0.200528 14.290908 14.421779 0.19195 

-0.95 110 1.449652 0.515492 1.965143 1.979887 0.046055 

105 3.61698 0.664221 4.281493 4.32144 0.070859 

100 6.730394 0.656562 7.386937 7.478487 0.093149 

95 10.522814 0.560182 11.082996 11.252283 0.110801 

90 14.743085 0.443986 15.187071 15.427257 0.123809 

0.75 110 2.321014 0.440063 2.761077 2.79501 0.109881 

105 3.857499 0.475741 4.33324 4.370133 0.128513 

100 6.310175 0.42701 6.737185 6.803907 0.146796 

95 9.854223 0.291273 10.145325 10.274714 0.160558 

90 14.235053 0.167333 14.402386 14.549206 0.167553 

-0.75 110 1.764733 0.351344 2.116077 2.080526 0.054295 

105 3.897485 0.411583 4.309067 4.276188 0.077837 

100 6.94123 0.393316 7.334547 7.277515 0.099984 

95 10.673079 0.331616 11.004534 10.929826 0.118031 

90 14.852886 0.136765 14.989651 15.024697 0.131557 

Table 6.1: Volatility process follows a Simple Brownian Motion with 
a= 0.1, r = 0.05andk = l. 
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0.5 110 2.51401 0.1796 2.69361 2.677158 0.099293 

105 4.162327 0.195099 4.357426 4.349432 0.118616 

100 6.703056 0.18134 6.884301 6.887848 0.137491 

95 10.214073 0.138677 10.35275 10.389251 0.151995 

90 14.457174 0.093119 14.550293 14.596035 0.160504 

-0.5 110 2.106229 0.15975 2.265979 2.249182 0.063796 

105 4.159931 0.15833 4.31826 4.309344 0.086421 

100 7.104181 0.168977 7.273158 7.214149 0.107748 

95 10.766899 0.141742 10.908641 10.812996 0.125257 

90 14.91327 0.111661 15.024931 14.920499 0.137719 

0.25 110 2.573018 0.042315 2.614529 2.578021 0.089701 

105 4.329345 0.046211 4.375555 4.340218 0.109824 

100 6.968613 0.043416 7.012029 6.983028 0.129222 

95 10.490538 0.037539 10.528077 10.506015 0.144528 

90 14.660471 0.016196 14.676667 14.660233 0.154393 

-0.25 110 2.359796 0.040272 2.400067 2.38458 0.072381 

105 4.320381 0.044348 4.364726 4.322913 0.094257 

100 7.162415 0.041809 7.204224 7.133907 0.114915 

95 10.766043 0.034854 10.800897 10.711205 0.131551 

90 14.897422 0.027139 14.924561 14.835279 0.143077 

0 110 2.517138 2.486435 0.080825 

105 4.378393 4.326996 0.101893 

100 7.118547 7.062116 0.121822 

95 10.674126 10.61299 0.137816 

90 14.811251 14.743523 0.148634 

Table 6.1 Continued.. 
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p b Calculated C.F. CCP Simulated S.E. 

0.95 110 2.052779 0.7262169 2.778996 3.010594 0.1194083 

105 3.516785 0.7696407 4.286425 4.521037 0.1380072 

100 5.938746 0.6435333 6.582279 6.827903 0.1563951 

95 9.570367 0.3594557 9.929823 10.20763 0.1701949 

90 14.10503 0.1884444 14.29347 14.57596 0.1754179 

-0.95 110 1.465225 0.5031988 1.968424 2.009105 0.04744766 

105 3.625432 0.6366818 4.262114 4.322088 0.07209224 

100 6.730491 0.6212323 7.351724 7.436452 0.09447091 

95 10.51867 0.5240718 11.04274 11.16606 0.1127158 

90 14.73891 0.4112558 15.15017 15.28758 0.1265338 

0.75 110 2.312387 0.4122456 2.724633 2.963393 0.1109139 

105 3.858761 0.4486269 4.307388 4.549214 0.1302168 

100 6.321038 0.4044438 6.728094 6.978501 0.1488933 

95 9.86696 0.2757934 10.14276 10.39694 0.1632714 

90 14.24454 0.1568302 14.40137 14.67709 0.1701071 

-0.75 110 1.769973 0.3372281 2.107201 2.154169 0.05585269 

105 3.89501 0.392482 4.287492 4.369176 0.07926726 

100 6.931021 0.3723157 7.303337 7.424602 0.1009169 

95 10.65958 0.3112112 10.97079 11.11974 0.118411 

90 14.84905 0.25439755 15.08492 15.24523 0.13155 

Table 6.2: The volatility process follows an Ornstein - Uhlenbeck 
process with a=0.1, k=l, r=0.05, a=0J,Xg = 100 and V^ = 0. 
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0.5 110 2.49434 0.1686056 2.662946 2.8703595 0.1017094 

105 4.149523 0.1846999 4.334223 4.549074 0.1216292 

100 6.69702 0.1717737 6.868794 7086679 0.1407383 

95 10.21131 0.1307052 10.34202 10.56835 0.1554402 

90 14.45612 0.08677706 14.5429 14.79708 0.1635396 

-0.5 110 2.098748 0.1524248 2.251173 2.309457 0.06623995 

105 4.147055 0.1704263 4.317481 4.397041 0.0884599 

100 7.085885 0.1602199 7.246105 7.371216 0.1090454 

95 10.74705 0.1333718 10.88042 11.04136 0.1257021 

90 14.89608 0.1041142 15.0002 15.18395 0.1376807 

0.25 110 2.548681 0.04003625 2.588718 2.755464 0.09290375 

105 4.309619 0.04386708 4.353486 4.534631 0.1133543 

100 6.952337 0.04116863 6.993506 7.176826 0.1328749 

95 10.47678 0.03287068 10.50966 10.71232 0.1479818 

90 14.65015 0.02367886 14.67383 14.90507 0.1571716 

-0.25 110 2.342994 0.03831577 2.381316 2.472027 0.07555303 

105 4.301222 0.04222176 4.343443 4.436763 0.09709313 

100 7.140569 0.0396711 7.18024 7.314232 0.1170629 

95 10.74409 0.03283458 10.77692 10.95539 0.13306 

90 14.8789 0.02532481 14.90423 15.1089 0.1440347 

0 100 2.494862 2.447907 0.08430024 

105 4.356859 4.48986 0.1052663 

100 7.097289 7.257128 0.1248408 

95 10.65413 10.83947 0.1405096 

90 14.79503 15.01577 0.1505679 

Table 6.2 Continued.. 
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p b Calculated C.F. CCP Simulated S.E. 

0.95 110 2.145946 0.085411 2.231357 2.308187 0.073264 

105 3.928759 0.098936 4.027696 4.066879 0.095204 
100 6.610466 0.093486 6.703952 6.723736 0.115949 

95 10.192842 0.069991 10.262832 10.29781 0.131655 

90 14.454283 0.04308 14.497363 14.543108 0.140696 

-0.95 110 1.991431 0.090238 2.081669 2.078354 0.060331 
105 3.922141 0.098474 4.020615 3.999647 0.083325 

100 6.751405 0.087625 6.83903 6.853382 0.104518 

95 10.386169 0.065568 10.473794 10.507584 0.121012 

90 14.596767 0.044268 14.641035 14.695058 0.132083 
0.75 110 2.180094 0.053217 2.23332 2.299371 0.072509 

105 3.983075 0.061118 4.044764 4.094231 0.094412 

100 6.678632 0.057421 6.736053 6.773408 0.115251 

95 10.256393 0.04322 10.299613 10.334223 0.131357 

90 14.499057 0.027137 14.526194 14.5503 0.140927 

-0.75 110 2.058914 0.055518 2.114432 2.099698 0.061669 

105 3.977592 0.060891 4.038484 4.022176 0.084489 

100 6.787376 0.054626 6.842002 6.826005 0.106001 

95 10.406935 0.041081 10.448016 10.438221 0.12277 

90 14.611664 0.027673 14.639337 14.625447 0.133612 

0.5 110 2.208241 0.023676 2.231917 2.279903 0.07128 

105 4.035839 0.026927 4.062766 4.123707 0.093146 

100 6.74748 0.025112 6.772597 6.803292 0.1202188 

95 10.322142 0.018987 10.341129 10.364329 0.130605 

90 14.544878 0.012187 14.557065 14.555246 0.140691 

Table 6.3: The volatility process follows an Ornstein - Uhlenbeck 
process with a = 10,k = l,r = 0.05, V^ = 0,X„ = 100 and a = 0.1. 
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-0.5 110 2.128028 0.024329 2.152356 2.152001 0.064217 

105 4.031225 0.026861 4.058086 4.051619 0.086781 

100 6.818265 0.024318 6.842583 6.809635 0.108321 

95 10.421298 0.018368 10.439667 10.399439 0.125018 

90 14.620672 0.012319 14.632991 14.596948 0.13546 

0.25 110 2.218443 0.005933 2.224377 2.2814 0.069658 

105 4.068162 0.006689 4.074851 4.128462 0.091961 

100 6.796636 0.006197 6.802833 6.807212 0.113399 

95 10.371454 0.0047 10.376154 10.373525 0.12969 

90 14.579721 0.00307 14.582791 14.56239 0.139915 

-0.25 110 2.178563 0.006012 2.184576 2.209668 0.664102 

105 4.06566 0.006681 4.072341 4.075665 0.088959 

100 6.831474 0.0061 6.837573 6.810703 0.110319 

95 10.420737 0.004623 10.42536 10.37738 0.12704 

90 14.617989 0.003084 14.621073 1.4585143 0.137122 

0 110 2.208792 2.255537 0.068118 

105 4.078353 4.107981 0.090602 

100 6.824676 6.811075 0.112042 

95 10.404252 10.372034 0.128603 

90 14.604139 14.571978 0.138699 

Table 6.3 Continued.. 
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